Enterprise Grade RAG in #Microsoft #Fabric using #CosmosDB and #DiskANN

In this video, we’re hardening our RAG architecture to meet the demands of the enterprise! Building on our previous video (https://youtu.be/jwVOQCUUH1Y), we are making our RAG for Microsoft Fabric enterprise grade.

this is the code used in this video:

%pip install langchain
%pip install langchain-core
%pip install langchain-experimental
%pip install langchain_openai
%pip install langchain-chroma
%pip install langchainhub
%pip install PyPDF2
%pip install --upgrade --quiet azure-cosmos langchain-openai langchain-community

import os, openai#, langchain, uuid
from synapse.ml.core.platform import find_secret


openai_key = find_secret(secret_name="YOUROPENAIKEY", keyvault="YOUR_KEYVAULT_NAME")
cosmosdb_key = find_secret(secret_name="YOURCOSMOSKEY", keyvault="YOUR_KEYVAULT_NAME")
openai_service_name = "YOUR_SERVICE_NAME"
openai_endpoint = "https://YOUR_SERVICE_NAME.openai.azure.com/"
openai_deployment_for_embeddings = "text-embedding-ada-002"
openai_deployment_for_query = "gpt-35-turbo"
openai_deployment_for_completions = "davinci-002" #"davinci-002"
openai_api_type = "azure"
openai_api_version = "2023-12-01-preview"


os.environ["OPENAI_API_TYPE"] = openai_api_type
os.environ["OPENAI_API_VERSION"] = openai_api_version
#os.environ["OPENAI_API_BASE"] = """"
os.environ["OPENAI_API_KEY"] = openai_key
os.environ["AZURE_OPENAI_ENDPOINT"] = openai_endpoint

base_path = "/lakehouse/default/Files/YOURFOLDER/"

del os.environ['OPENAI_API_BASE'] 

import bs4
from langchain import hub
from langchain_chroma import Chroma
from langchain_community.document_loaders import WebBaseLoader
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from langchain_openai import OpenAIEmbeddings
#from langchain_openai import AzureOpenAIEmbeddings
from langchain.embeddings import AzureOpenAIEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain.llms import AzureOpenAI, OpenAI
from langchain_openai import AzureOpenAIEmbeddings

from PyPDF2 import PdfReader
from langchain.document_loaders import PyPDFLoader
from langchain.schema import Document

folder_path = base_path

def load_pdfs_from_folder(folder_path):
    documents = []
    for filename in os.listdir(folder_path):
        if filename.endswith('.pdf'):
            file_path = os.path.join(folder_path, filename)
            reader = PdfReader(file_path)
            text = ""
            for page in reader.pages:
                text += page.extract_text()
            document = Document(page_content=text, metadata={"document_name": filename})
            documents.append(document)
    return documents

# Load documents
documents = load_pdfs_from_folder(folder_path)

# Print the content of each document
for doc in documents:
    print(f"Document Name: {doc.metadata['document_name']}")
    #print(doc.page_content)
    print("\n---\n")

indexing_policy = {
    "indexingMode": "consistent",
    "includedPaths": [{"path": "/*"}],
    "excludedPaths": [{"path": '/"_etag"/?'}],
    "vectorIndexes": [{"path": "/embedding", "type": "diskANN"}],
}

vector_embedding_policy = {
    "vectorEmbeddings": [
        {
            "path": "/embedding",
            "dataType": "float32",
            "distanceFunction": "cosine",
            "dimensions": 1536,
        }
    ]
}


      from azure.cosmos import CosmosClient, PartitionKey
from langchain_community.vectorstores.azure_cosmos_db_no_sql import (
    AzureCosmosDBNoSqlVectorSearch,
)
from langchain_openai import AzureOpenAIEmbeddings

HOST = "https://YOURCOSMOSDB.documents.azure.com:443/"
KEY = cosmosdb_key

cosmos_client = CosmosClient(HOST, KEY)
database_name = "YOURCOSMOSDBNAME"
container_name = "YOURCONTAINER"
partition_key = PartitionKey(path="/id")
cosmos_container_properties = {"partition_key": partition_key}
cosmos_database_properties = {"id": database_name}

openai_embeddings = AzureOpenAIEmbeddings()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=4000, chunk_overlap=200)
splits = text_splitter.split_documents(documents)

# insert the documents in AzureCosmosDBNoSql with their embedding
vector_search = AzureCosmosDBNoSqlVectorSearch.from_documents(
    documents=splits,
    embedding=openai_embeddings,
    cosmos_client=cosmos_client,
    database_name=database_name,
    container_name=container_name,
    vector_embedding_policy=vector_embedding_policy,
    indexing_policy=indexing_policy,
    cosmos_container_properties=cosmos_container_properties,
    cosmos_database_properties=cosmos_database_properties,
)


from langchain.schema import HumanMessage
import openai
display(answers[0].page_content)

from langchain_openai import AzureChatOpenAI
from langchain.schema import HumanMessage
import openai

llm = AzureChatOpenAI(azure_deployment=openai_deployment_for_query)

retriever = vector_search.as_retriever()
prompt = hub.pull("rlm/rag-prompt")

message = HumanMessage(
    content="Tell me what you know about Prohabits."
)
result = llm.invoke([message])

def format_docs(docs):
    return "\n\n".join(doc.page_content for doc in docs)


rag_chain = (
    {"context": retriever | format_docs, "question": RunnablePassthrough()}
    | prompt
    | llm
    | StrOutputParser()
)

rag_chain.invoke("What is Prohabits?")
Previous
Previous

DAX Calculation for Time Series Forecast

Next
Next

Step-by-Step Guide to the Best Planning and Forecasting Visual in Power BI